

Please write clearly in block capitals.	
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

GCSE CHEMISTRY

Higher Tier Paper 1

Thursday 17 May 2018

Morning

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

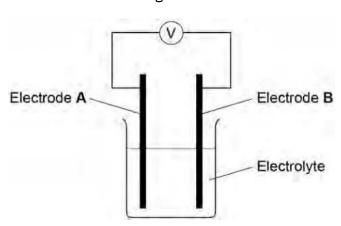
- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked
- In all calculations, show clearly how you work out your answer.

Information

- There are 100 marks available on this paper.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

For Exam	iner's Use
Question M	lark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

0 1	Soluble salts are formed by reacting metal oxides with acids.	
0 1 1	Give one other type of substance that can react with an acid to form a soluble s	salt. [1 mark]
0 1 2	Calcium nitrate contains the ions Ca $^{2+}$ and NO $_{3}^{-}$	
	Give the formula of calcium nitrate.	[1 mark]
	Describe a mathed to make pure dry expetals of magnesium culfate from a m	otal
0 1 3	Describe a method to make pure, dry crystals of magnesium sulfate from a moxide and a dilute acid.	6 marks]


	Do not write outside the box
	8
Turn over for the next question	

0 2	This question is about metals and metal compounds.	
0 2 1	Iron pyrites is an ionic compound.	
	Figure 1 shows a structure for iron pyrites.	
	Figure 1	
	Key Fe S	
	Determine the formula of iron pyrites.	
	Use Figure 1.	[1 mark]
0 2.2	An atom of iron is represented as 5626Fe	
	Give the number of protons, neutrons and electrons in this atom of iron.	
		[3 marks]
	Number of protons	
	Number of neutrons	
	Number of electrons	
	Turn in a turn siting model	
0 2 3	Iron is a transition metal.	
	Sodium is a Group 1 metal.	
	Give two differences between the properties of iron and sodium.	[2 marks]
	1	
	2	

	Nickel is extracted from nickel oxide by reduction with carbon.		Do n outs
02.4	Explain why carbon can be used to extract nickel from nickel oxide.	[2 marks]	
0 2 5	An equation for the reaction is:		
	NiO + C □ Ni + CO		
	Calculate the percentage atom economy for the reaction to produce nickel.		
	Relative atomic masses (Ar): C = 12 Ni = 59		
	Relative formula mass (Mr): NiO = 75		
	Give your answer to 3 significant figures.		
		[3 marks]	
		•	
	Percentage atom economy =	%	

0 3	Chemical reactions can produce electricity.
0 3 1	Figure 2 shows a simple cell.

Figure 2

Which of these combinations wouldnot give a zero reading on the voltmeter in Figure 2?

[1 mark]

Tick one box.

Electrode A	Electrode B	Electrolyte	
Copper	Copper	Sodium chloride solution	
Zinc	Zinc	Water	
Copper	Zinc	Sodium chloride solution	
Copper	Zinc	Water	

	Alkaline batteries are non-rechargeable.	
0 3 2	Why do alkaline batteries eventually stop working?	
		[1 mark]
0 3 3	Why can alkaline batteries not be recharged?	[1 mark]
		[I mark]
	Question 3 continues on the next page	
	quooner commune on the next page	

	Hydrogen fuel cells and rechargea electric cars.	ble lithium-ion batterie	s can be used to power
0 3 4	Complete the balanced equation fo	or the overall reaction in	a hydrogen fuel cell. [2 marks]
	H2 +	0	H2O
0 3 \$	Table 1 shows data about differen	t ways to power electric	cars.
		Table 1	
		Hydrogen fuel cell	Rechargeable lithium-ion battery
	Time taken to refuel or recharge in minutes 5 30		
	Distance travelled before refuelling or recharging in miles Up Distance travelled per unit of energy in km 22 66 Cost of refuelling or recharging	to 415 Up to 240	
	in £ 50 3 Minimum cost of car in £ 60 000 1	8 000	
	Evaluate the use of hydrogen fuel of batteries to power electric cars. Use Table 1 and your own knowled		nargeable lithium-ion
			[6 marks]

	Do r out
Turn over for the next question	_
rum over for the next question	

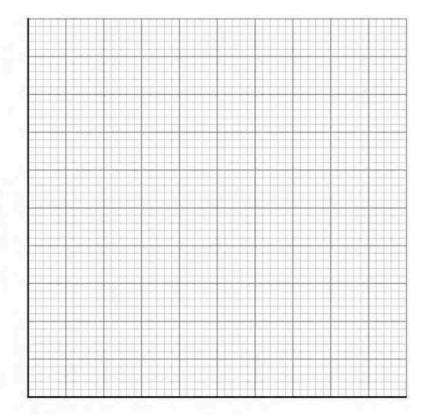
0 4 Figure 3 represents different models of the atom. Figure 3 D E Which diagram shows the plum pudding model of the atom? [1 mark] Tick one box. В С D Ε 0 4 2 Which diagram shows the model of the atom developed from the alpha particle scattering experiment? [1 mark] Tick one box. Α В С D Ε 0 4 3 Which diagram shows the model of the atom resulting from Bohr's work? [1 mark] Tick one box. ABCDE

0 4 4	Define the mass number of an atom.	outside box
	[1 mark]	
0 4 5	Element X has two isotopes. Their mass numbers are 69 and 71	
	The percentage abundance of each isotope is: • 60% of 69X • 40% of 71X	
	Estimate the relative atomic mass of element X.	
	Tick one box. [1 mark]	
	< 69.5	
	Between 69.5 and 70.0	
	Between 70.0 and 70.5	
	> 70.5	
	Chadwield's experimental work on the stem lad to a better understanding of icotones	
0 4 6	Chadwick's experimental work on the atom led to a better understanding of isotopes. Explain how his work led to this understanding.	
	[3 marks]	
		8

0 5

A student investigated the temperature change in displacement reactions between metals and copper sulfate solution.

Table 2 shows the student's results.

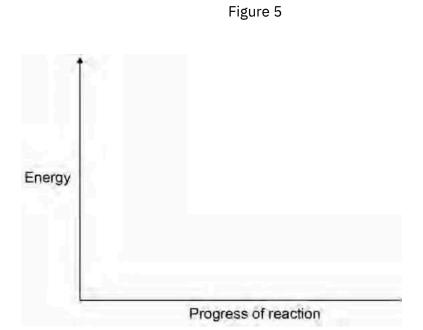

Table 2

Metal	Temperature increase in °C
Copper	0
Iron	13
Magnesium	43
Zinc	17

0 5 1 Plot the data from Table 2 on Figure 4 as a bar chart.

[2 marks]

Figure 4


Temperature increase in °C

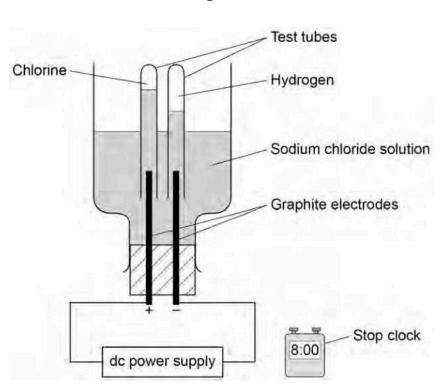
Metal

0 5 2	The student concluded that the reactions between the metals and copper sulfate solution are endothermic.
	Give one reason why this conclusion is not correct.
	[1 mark]
0 5 3	The temperature change depends on the reactivity of the metal.
	The student's results are used to place copper, iron, magnesium and zinc in order of
	their reactivity. Describe a method to find the position of an unknown metal in this reactivity series.
	Your method should give valid results.
	[4 marks]
	Question 5 continues on the next page
	t and a second s

Draw a fully labelled reaction profile for the reaction between zinc and copper sulfate solution on Figure 5.

[3 marks]

10


Do not write outside the box There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

0 6 A student investigated the electrolysis of different substances. Figure 6 shows the apparatus. Figure 6 dc power supply Graphite electrodes Solid zinc chloride Crucible 0 6.1 Explain why electrolysis would not take place in the apparatus shown in Figure 6. [2 marks] 0 6.2 Explain why graphite conducts electricity. Answer in terms of the structure and bonding in graphite. [3 marks]

The student investigated how the volume of gases produced changes with time in the electrolysis of sodium chloride solution.

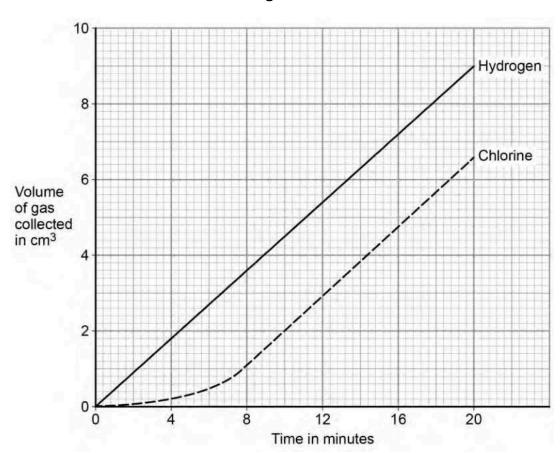
Figure 7 shows the apparatus.

Figure 7

The student made an error in selecting the apparatus for this investigation.

How should the apparatus be changed?

Give one reason for your answer.


2	marks]	

Another student used the correct apparatus.

This student measured the volumes of gases collected every minute for 20 minutes.

Figure 8 shows the student's results.

0	6.4	Describe the trends shown in the results.
		Use values from Figure 8.

[3 marks]

Do not w	rite
outside 1	the
box	

14

0 6.5	The number of moles of each gas produced at the electrodes is the same.	C
	No gas escapes from the apparatus.	
	Suggest one reason for the difference in volume of each gas collected.	
	[1 mark]	
0 6 6	Calculate the amount in moles of chlorine collected after 20 minutes.	
	Use Figure 8.	
	The volume of one mole of any gas at room temperature and pressure is 24.0 dm3	
	Give your answer in standard form.	
	[3 marks]	
	Moles of chlorine = mol	
		-
	Turn over for the next question	
	1	

0 7	This question is about Group 7 elements.	
	Chlorine is more reactive than iodine.	
0 7 1	Name the products formed when chlorine solution reacts with potassium iodide solution.	[1 mark]
0 7 2	Explain why chlorine is more reactive than iodine.	[3 marks]
0 7 3	Chlorine reacts with hydrogen to form hydrogen chloride. Explain why hydrogen chloride is a gas at room temperature. Answer in terms of structure and bonding.	[3 marks]

0 7.4

Bromine reacts with methane in sunlight.

Figure 9 shows the displayed formulae for the reaction of bromine with methane.

Figure 9

Table 3 shows the bond energies and the overall energy change in the reaction.

Table 3

	CH Br	_Br <u>CB</u> r	HBr	Overall energy change
Energy in kJ/mol 412 193		X	366	- 51

Calculate the bond energy X for the C___Br bond.

Use Figure 9 and Table 3.

[4 marks]

Bond energy X = kJ/mol

11

0 8	Titanium is a transition metal.
	Titanium is extracted from titanium dioxide in a two stage industrial process.
	Stage 1 TiO2 + 2 C + 2 Cl2 🛘 TiCl4 + 2 CO
	Stage 2 TiCl4 + 4 Na 🛮 Ti + 4 NaCl
081	Suggest one hazard associated with Stage 1. [1 mark]
0 8 2	Water must be kept away from the reaction in Stage 2.
	Give one reason why it would be hazardous if water came into contact with sodium. [1 mark]
0 8 3	Suggest why the reaction inStage 2 is carried out in an atmosphere of argon and not in air.
	[2 marks]

Titanium chloride is a liquid at room temperature.	
Explain why you would not expect titanium chloride to be a liquid at room temperature.	[2]
	[3 marks]
In Stage 2, sodium displaces titanium from titanium chloride.	
Sodium atoms are oxidised to sodium ions in this reaction.	
Why is this an oxidation reaction?	
	[1 mark]
Complete the half equation for the oxidation reaction.	
No \square	[1 mark]
Na □ +	
	Explain why you would not expect titanium chloride to be a liquid at room temperature. In Stage 2, sodium displaces titanium from titanium chloride. Sodium atoms are oxidised to sodium ions in this reaction. Why is this an oxidation reaction?

0 8.7	In Stage 2, 40 kg of titanium chloride was added to 20 kg of sodium.
	The equation for the reaction is:
	TiCl4 + 4 Na 🛮 Ti + 4 NaCl
	Relative atomic masses (Ar): Na = 23 Cl = 35.5 Ti = 48 Explain why
	titanium chloride is the limiting reactant.
	You must show your working.
	[4 marks]
	For a Stage 2 reaction the percentage yield was 92.3%
0 8 8	The theoretical maximum mass of titanium produced in this batch was 13.5 kg.
	Calculate the actual mass of titanium produced. [2 marks]
	Mass of titanium = kg

15

0 9	This question is about acids and alkalis.	
0 9 1	Dilute hydrochloric acid is a strong acid.	
	Explain why an acid can be described as both strong and dilute.	
		[2 marks]
0 9 2	A 1.0 × 10–3 mol/dm3 solution of hydrochloric acid has a pH of 3.0	
	What is the pH of a $1.0 \times 10-5$ mol/dm3 solution of hydrochloric acid?	
	-11	[1 mark]
	pH =	
	Question 9 continues on the next page	

A student titrated 25.0 cm	n3 portions of dilute sulfuric acid with a
0.105 mol/dm3 sodium h	droxide solution.

0	9.	3
---	----	---

Table 4 shows the student's results.

Table 4

	Titration	Titration	Titration	Titration	Titration
	1	2	3	4	5
Volume of sodium	droxide solutio	n in cm3 23.	50 21.10 22.:	10 22.15	22.15

The equation for the reaction is:

2 NaOH + H2SO4 🛮 Na2SO4 + 2 H2O

Calculate the concentration of the sulfuric acid in mol/dm3

Use only the student's concordant results.

Concordant results are those within 0.10 cm3 of each other.

mol/dm
Concentration of sulfuric acid =

[5 marks]

0 9 . 4

0 9.5

27	
Explain why the student should use a pipette to measure the dilute sulfuric acid and a burette to measure the sodium hydroxide solution.	Do not write outside the box
[2 marks]	
Calculate the mass of sodium hydroxide in 30.0 cm3 of a 0.105 mol/dm3 solution.	
Relative formula mass (Mr): NaOH = 40	
[2 marks]	
Mass of sodium hydroxide = g	
	12
END OF QUESTIONS	

* 2 7 *

Do not write outside the There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED Copyright information For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2018 AQA and its licensors. All rights reserved.

box