Mark Scheme (Results) Summer 2018 Pearson Edexcel GCSE Combined Science – Paper 3 Chemistry 1 (1SC0_1CF) ## **Edexcel and BTEC Qualifications** Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus. ## Pearson: helping people progress, everywhere Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk Summer 2018 Publications Code 1SC0_1CF_1806_MS All the material in this publication is copyright © Pearson Education Ltd 2018 ## **General Marking Guidance** - All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last. - Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions. - Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie. - There is no ceiling on achievement. All marks on the mark scheme should be used appropriately. - All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme. - Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited. - When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted. - Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response. Mark schemes have been developed so that the rubrics of each mark scheme reflects the characteristics of the skills within the AO being targeted and the requirements of the command word. So for example the command word 'Explain' requires an identification of a point and then reasoning/justification of the point. Explain questions can be asked across all AOs. The distinction comes whether the identification is via a judgment made to reach a conclusion, or, making a point through application of knowledge to reason/justify the point made through application of understanding. It is the combination and linkage of the marking points that is needed to gain full marks. When marking questions with a 'describe' or 'explain' command word, the detailed marking guidance below should be consulted to ensure consistency of marking. | Assessment
Objective | | Command Word | | | |-------------------------|--------------|---|---|--| | Strand | Element | Describe | Explain | | | A01* | | An answer that combines the marking points to provide a logical description | An explanation that links identification of a point with reasoning/justification(s) as required | | | AO2 | | An answer that combines the marking points to provide a logical description, showing application of knowledge and understanding | An explanation that links identification of a point (by applying knowledge) with reasoning/justification (application of understanding) | | | AO3 | 1a and
1b | An answer that combines points of interpretation/evaluation to provide a logical description | | | | AO3 | 2a and
2b | | An explanation that combines identification via a judgment to reach a conclusion via justification/reasoning | | | AO3 | 3a | An answer that combines the marking points to provide a logical description of the plan/method/experiment | | | | AO3 | 3b | | An explanation that combines identifying an improvement of the experimental procedure with a linked justification/reasoning | | ^{*}there will be situations where an AO1 question will include elements of recall of knowledge directly from the specification (up to a maximum of 15%). These will be identified by an asterisk in the mark scheme. | Question
Number | Answer | | Additional guidance | Mark | |--------------------|---|-----------------|-------------------------------|--------| | 1(a)(i) | particle | relative charge | do not allow more | (2) | | | electron | +1 | than 1 line from any particle | AO 2 1 | | | neutron | 0 | | | | | proton | -1 | | | | | 3 correct = 2 marks
1 correct = 1 mark | | | | | Question
Number | Answer | Mark | |--------------------|---|--------| | 1(a)(ii) | C 1 | (1) | | | The only correct answer is C | AO 2 1 | | | A is not correct because mass is 1 | | | | B is not correct because this is relative mass of electron | | | | D is not correct because mass cannot be negative | | | Question
Number | Answer | Mark | |--------------------|---|--------| | 1(b) | C magnesium | (1) | | | The only correct answer is C | AO 2 1 | | | A is not correct because this element is in period 4 | | | | B is not correct because this element is in period 4 | | | | D is not correct because this element is in period 5 | | | Question | Answer | Additional guidance | Mark | |----------|--|---|--------| | Number | | | | | 1(c) | A description to include | | (3) | | | both have 18 electrons/2.8.8 (in shells /orbits) (1) both have 18 protons (in the | | AO 1 1 | | | nucleus)
(1) | | | | | argon-38 has 20 neutrons AND
argon-40 has 22 neutrons (in the
nucleus) (1) | allow argon 40 has two more neutrons than argon 38 / ORA | | | | | ignore generic definition of an isotope | | (Total for Question 1 = 7 marks) | Question
Number | Answer | Mark | |--------------------|---|--------| | 2(a) | B CH ₂ | (1) | | | The only correct answer is B | AO 2 1 | | | A is not correct because there are not equal C and H | | | | C is not correct because it is not simplest ratio | | | | D is not correct because it is not simplest ratio | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--------------------------------------|---|--------| | 2(b) | 56 with or without working (2) | | (2) | | | OR | | AO 2 1 | | | $(4 \times 12) + (8 \times 1) = (1)$ | | | | | = 56 (1) | | | | | | allow for ONE mark | | | | | correctly evaluated | | | | | expression of form:
$(4 \times 12) + (Y \times 1) = \dots$ | | | | | $(X \times 12) + (8 \times 1) =$
OR | | | | | (8 x 12) + (4 x 1) = 100 | | | | | [In each case working | | | | | and correctly evaluated answer required] | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|---|---------------------|--------| | 2(c)(i) | $C_4H_8 + 6O_2 \rightarrow 4CO_2 + 4H_2O$ | | (2) | | | 4CO ₂ (1)
4H ₂ O (1) | | AO 2 1 | | Question
Number | Answer | Additional guidance | Mark | |--------------------|---|-----------------------------------|--------| | 2(c)(ii) | A description linking | second mark
dependent on first | (2) | | | (bubble gas through)
limewater (1) | | AO 1 1 | | | (limewater) turns {milky /
cloudy / white precipitate} (1) | | | | | | ignore lit splint goes
out | | | Question
Number | Answer | Mark | |--------------------|---|---------| | 2(d) | A -6 low | (1) | | | The only correct answer is A | AO 3 2b | | | B is not correct because bpt is too high and solubility not high | | | | C is not correct because solubility not high | | | | D is not correct because bot is too high | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|--|---------------| | 2(e) | high melting point / high boiling point / hard / insoluble (in water) / does not conduct (electricity) | ignore strong bonds ignore strong ignore values given | (1)
AO 1 1 | | | | ignore any other properties but reject contradictions to allowed answers | | (Total for Question 2 = 9 marks) | Question
Number | Answer | Additional guidance | Mark | |--------------------|-----------|---------------------|------| | 3(a) | flammable | allow inflammable | (1) | | | | | AO 3 | | | | | 2b | | Question
Number | Answer | Additional guidance | Mark | |--------------------|-------------------|--|--------| | 3(b) | barium and sulfur | both elements must be present for the mark | (1) | | | | allow Ba and S | AO 2 1 | | | | reject sulfide/sulfate
reject if any other elements
included | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|---|--------------------| | 3(c) | An explanation linking one of the following pairs of points | second mark
dependent on first | (2)
AO 3 | | | wear gloves (1) {so does not contact/to protect your} skin (1) OR wear goggles (1) {so does not contact/to protect} the eyes (1) | ignore
protective/safety
clothing | 2a
AO 3
2b | | | OR use in fume cupboard / mask (1) so you do not inhale it (1) | | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|----------|--|--------| | 3(d)(i) | 25.7 (g) | do not allow 25 | (1) | | | | answer may be written on the lower diagram | AO 2 2 | | Question
Number | Answer | Additional guidance | Mark | |--------------------|----------------|-----------------------------|----------------------| | 3(d)(ii) | barium sulfate | do not allow barium sulfide | (1)
AO 1 2 | | Question
Number | Answer | Additional guidance | Mark | |--------------------|----------------------|--|--------| | 3(e)(i) | so that the ions can | allow the solid does not conduct | (1) | | | move | allow conducts when {in solution/liquid} ignore conducts when molten | AO 2 2 | | | | allow so cations / anions can move | | | | | ignore so particles can move | | | | | reject electrons move | | | Question
Number | Answer | Mark | |--------------------|--------------------------|----------------------| | 3(e)(ii) | OH- and CI- only circled | (1)
AO 1 1 | | Question
Number | Answer | Additional guidance | Mark | |--------------------|---|-----------------------------------|---------| | 3(e)(iii) | An explanation linking one of the following pairs of points | | (2) | | | use a crucible/metal container
(instead of a beaker) (1) which will not break/melt (when
heated strongly) (1) | | AO 3 3b | | | OR | allow blow
torch
ignore hot | | | | add a Bunsen burner (under the container) (1) because heat needed to melt the lead bromide / to make the lead bromide a liquid (1) | water bath | | (Total for Question 3 = 10 marks) | Question
Number | Answer | Mark | |--------------------|---|--------| | 4(a) | A chromatography | (1) | | | The only correct answer is A | AO 1 1 | | | B is not correct this would not separate colours | | | | C is not correct because this would not separate colours | | | | D is not correct because this would not separate colours in best way | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|---|---------------| | 4(b)(i) | arrows drawn to show water going in the condenser in the bottom and out the condenser at the top | reject arrows drawn
coming out of the middle
of the condenser | (1)
AO 1 2 | | Question
Number | Answer | Additional guidance | Mark | |--------------------|---|---|----------------------| | 4(b)(ii) | An explanation linking • to cool (1) | | (2)
AO 1 2 | | | so (water) {vapour/gas}
turns to liquid (1) | allow water for liquid allow steam for vapour | | | | | if cooling the ink max 1 for first marking point only | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|----------------------------------|--|---------------| | 4(b)(iii) | electric heater / heating mantle | allow spirit burner
allow hot plate/heated
plate
allow blow torch | (1)
AO 2 2 | | | | ignore heater alone
ignore Bunsen burner
ignore hot water bath | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|--|--------| | 4(c) | particles at A: | | (2) | | | white circles only, none touching (1) | | AO 2 1 | | | particles at B:
white circles only, randomly
arranged, more circles than in A
(1) | reject 'strings' of particles | | | | | if black circles are present in both boxes | | | | | allow 1 mark if | | | | | arrangement of particles in both boxes is | | | | | otherwise correct. | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|--|--------| | 4(d) | An explanation linking | | (2) | | | physical changes do not result
in formation of a new substance
/ chemical change results in
formation of a new substance
(1) | allow no chemical reaction has taken place | AO 1 1 | | | physical change is easily
reversed / chemical change is
not easily reversed (1) | ignore you can see the change | | (Total for question 4 = 9 marks) | Question
Number | | | Mark | |--------------------|--|---|---------------| | 5(a) | any two of the following high melting points (1) high boiling points (1) malleable (1) conduct electricity (1) conduct heat (1) high density (1) shiny (1) ductile (1) | allow bendy as alternative to malleable | (2)
AO 1 2 | | | strong (1)sonorous (1) | ignore solid ignore hard | | | | | allow good conductor for 1 mark | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|---------------------|--|----------------------| | 5(b) | hydrochloric (acid) | allow HCI
ignore HCL, hCl, HCL2 etc | (1)
AO 2 1 | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--------------------------|--|----------------------| | 5(c)(i) | A description including | | (2)
AO 1 1 | | | apply lighted splint (1) | allow flame / ignite gas / fire | | | | • (squeaky) pop (1) | ignore 'squeaky pop test' / glowing splint | | | | | second mark is dependent on first | | | Question
Number | Answer | | Mark | |--------------------|---------------------------|---|----------------------| | 5(c)(ii) | An explanation linking | | (2)
AO 1 1 | | | • loss of electron(s) (1) | allow gains two electrons for 1 mark | | | | • two electrons (1) | zero marks overall if sharing of electrons / gain or loss of protons / positive electrons marks can be awarded for suitably drawn diagram / half equation | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|---|--------| | 5(d) | final answer of 94 (g dm ⁻³) with | allow ECF (error carried | (2) | | | or without working (2) | forward) throughout | AO 2 1 | | | OR
<u>23.5</u> (1) (= 0.094)
250
0.094 x 1000 (1) | other final answers:
0.094 / 9.4 (1)
0.000094 or 9.4 x 10 ⁻⁵ (1) | | | | OR <u>250</u> (dm³) (1) (= 0.25 (dm³)) 1000 <u>23.5</u> (1) 0.25 | 0.25 (dm³) (1) | | | | OR
1000 (1) = 4
250
4 x 23.5 (1) | allow <u>250</u> x 1000 or 10638(.3) (1) 23.5 | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|---|---------------| | 5(e) | A description to include filter (1) and two in a logical order from crystallisation (1) heat solution (to concentrate) (1) | if filtration not first stage, ignore it and give maximum 2 marks allow description of filtration ignore filtration to obtain nickel sulfate (crystals) allow 'leave until water evaporates' / use of | (3)
AO 2 2 | | | allow to cool (1) | water bath / evaporate {water/the solution} | | | | dry crystals between filter papers (1) | allow leave {until crystals form / for a few hours / in a warm place / on a window sill} | | | | | allow 'dry crystals in
(warm) oven' | | | | | if alternative methods of
making nickel sulfate
solution described, max 1
mark from last four
marking points | | (Total for question 5 = 12 marks) | Question
Number | Answer | Mark | |--------------------|---|----------------------| | 6(a)(i) | C iron oxide is reduced | (1)
AO 1 1 | | | The only correct answer is C | | | | A is not correct because carbon gains oxygen | | | | B is not correct because it is not an acid-base reaction | | | | D is not correct because iron oxide loses oxygen | | | Question
Number | Answer | | Mark | |--------------------|---|---|----------------------| | 6(a)(ii) | final answer of 168 (tonnes) with or without working (3) | allow ECF
throughout | (3)
AO 2 1 | | | OR relative formula mass $Fe_2O_3 = 2x56 + 3x16 (= 160) (1)$ | M_r [Fe ₂ O ₃]= 160
seen without
working (1) | | | | 160 tonnes Fe_2O_3 produces {2x56 / 112} tonnes Fe (1) | allow 320 tonnes : 224 tonnes (1) | | | | 240 tonnes Fe_2O_3 produces
2x56 x 240 (1) = 168 (tonnes)
160
OR
relative formula mass Fe_2O_3
= 2x56 + 3x16 (= 160) (1) | final answer 84
(tonnes) with or
without working (2) | | | | $\frac{240}{160}$ (1) = 1.5
160
1.5 x 112 (1) = 168 (tonnes)
OR
relative formula mass Fe ₂ O ₃
= 2x56 + 3x16 (= 160) (1) | Note: final answer
1.5 scores 2 overall | | | | $\frac{112}{160}$ (1) = 0.7
0.7 x 240 (1) = 168 (tonnes) | | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|---|---------------| | 6(b) | An explanation linking the following points • aluminium is high in reactivity / aluminium oxide is (very) stable (1) • aluminium (oxide) cannot be reduced by carbon (1) | allow carbon is less reactive than aluminium / ORA / aluminium is very reactive ignore 'aluminium is more reactive' (alone) allow carbon cannot displace aluminium / aluminium oxide does not react with carbon ignore aluminium extracted by electrolysis | (2)
AO 1 1 | | Question
Number | Answer | Mark | |--------------------|--------------|-----------------------| | 6(c) | electrolysis | (1)
AO 3 2a | | Question
Number | Indic | ative content | Mark | |--------------------|--|---|-------------------------| | 6(d) | deploy
mater | ers will be credited according to candidate's yment of knowledge and understanding of the rial in relation to the qualities and skills outlines in eneric mark scheme. | (6)
AO 1 1
AO 2 1 | | | The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. | | | | | recycling conserves raw materials/natural resources less power/energy used therefore conserves fossil fuels reduces waste in landfill sites mining for ores avoided less damage to habitats/landscape less energy required to melt and reform metals than to extract them produces less carbon dioxide than extracting/ reduces carbon footprint carbon dioxide is a greenhouse gas greenhouse gases cause global warming avoids use of large amounts of electricity to extract aluminium from its ore electricity is expensive avoids use of large amounts of heat energy needed to extract iron from its ore | | | | | IGNO | RE: environmentally friendly cheaper faster employment | | | | Mark | Descriptor | | | Level | 0 | . No awardable santant | | | Level 1 | 1-2 | No awardable content Demonstrates elements of chemical understanding, some of which is inaccurate. Understanding of scientific ideas lacks detail. (AO1) The explanation attempts to link and apply knowledge and understanding of scientific ideas, flawed or simplistic connections made between elements in the context of the question. (AO2) | | | Level 2 | 3-4 | Demonstrates chemical understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas is not fully detailed and/or developed. (AO1) The explanation is mostly supported through linkage and application of knowledge and understanding of scientific ideas, some logical connections made between elements in the context of the question. (AO2) | |---------|-----|--| | Level 3 | 5-6 | Demonstrates accurate and relevant chemical understanding throughout. Understanding of the scientific ideas is detailed and fully developed. (AO1) The explanation is supported throughout by linkage and application of knowledge and understanding of scientific ideas, logical connections made between elements in the context of the question. (AO2) | (Total for question 6 = 13 marks Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom