Mark Scheme (Results) Summer 2019 Pearson Edexcel GCSE In Combined Science (1SC0) Paper 1PH ## **Edexcel and BTEC Qualifications** Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus. Pearson: helping people progress, everywhere Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk Summer 2019 Publications Code 1SC0_1PH_1906_MS All the material in this publication is copyright © Pearson Education Ltd 2019 ## **General Marking Guidance** - All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last. - Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions. - Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie. - There is no ceiling on achievement. All marks on the mark scheme should be used appropriately. - All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme. - Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited. - When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted. - Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response. Mark schemes have been developed so that the rubrics of each mark scheme reflects the characteristics of the skills within the AO being targeted and the requirements of the command word. So for example the command word 'Explain' requires an identification of a point and then reasoning/justification of the point. Explain questions can be asked across all AOs. The distinction comes whether the identification is via a judgment made to reach a conclusion, or, making a point through application of knowledge to reason/justify the point made through application of understanding. It is the combination and linkage of the marking points that is needed to gain full marks. When marking questions with a 'describe' or 'explain' command word, the detailed marking guidance below should be consulted to ensure consistency of marking. | Assessment
Objective | | Command Word | | | | |-------------------------|--------------|---|---|--|--| | Strand | Ele-
ment | Describe | Explain | | | | AO1 | | An answer that combines the marking points to provide a logical description | An explanation that links identification of a point with reasoning/justification(s) as required | | | | AO2 | | An answer that combines the marking points to provide a logical description, showing application of knowledge and understanding | An explanation that links identification of a point (by applying knowledge) with reasoning/justification (application of understanding) | | | | AO3 | 1a and
1b | An answer that combines points of interpretation/evaluation to provide a logical description | | | | | AO3 | 2a and
2b | | An explanation that combines identification via a judgment to reach a conclusion via justification/reasoning | | | | AO3 | 3a | An answer that combines the marking points to provide a logical description of the plan/method/experiment | | | | | AO3 | 3b | | An explanation that combines identifying an improvement of the | | | | | | | experimental procedure with a linked justification/reasoning | | | | Question
Number | Answer | Mark | |--------------------|--|------| | 1(a) | C red | (1) | | | The only correct answer is C red | | | | A is not correct because blue has a shorter wavelength than red | | | | B is not correct because green has a shorter wavelength than red | | | | D is not correct because yellow has a shorter wavelength than red | | | Question
Number: | Answer | Additional guidance | Mark | |---------------------|---|----------------------|------| | 1(b) | an explanation linking: infrared is absorbed / blocked (by the armchair / objects) / cannot pass through | stopped | (2) | | | OR radio waves can go through (the armchair/objects) (1) | transmitted | | | | WITH (infrared and radio have) different wavelengths / frequencies OR infrared requires 'line-of-sight' (idea) OR radio waves do not require 'line-of- sight' (idea) OR diffraction (idea) (1) | accept
comparison | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|---|---|------| | 1(c)(i) | evidence of use of scale
on horizontal distance axis
only (1) | may be seen on the diagram | (2) | | | 12 (cm) (1) | range 11.5 to 12.5 (cm) award full marks for the correct answer without working | | | | | 6 (cm) or 30(cm) scores 1
mark (evidence of use) | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|--|------| | 1(c)(ii) | a description to include:
moves up and down (1) | independent marking points vertical (oscillations) | (2) | | | at right angles / normal /
perpendicular to (direction
of) wave / travel (1) | not in the (direction of)
wave / travel | | | | | accept 'transverse wave'
for 2nd MP | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|---|------| | 1(d) | recall and substitution (1) (v =) 0.25 x 1.5 | | (2) | | | evaluation (1) | | | | | 0.38 (m/s) | accept 0.375 or 0.37
(m/s) | | | | | accept 37.5, 37 or 38
for 1 mark only | | | | | award full marks for
the correct answer
without working | | (Total for Question 1 = 9 marks) | Question
Number | Answe | er | | Additional guidance | Mark | |--------------------|-------|---------|-------|---|------| | 2(a) | | 7 8 (1) | 6 (1) | one mark for each column must have both numbers in a column correct to get the mark | (2) | | Question
Number | Answer | Additional guidance | Mark | |--------------------|-----------------------------|--|------| | 2(b)(i) | Geiger (Müller counter) (1) | GM (tube/meter) or other appropriate detector e.g. dosimeter, film badge, scintillation counter accept incorrect spellings such as "giga" ignore radioactive | (1) | | | | counter | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|--|------| | 2(b)(ii) | any two acceptable sources from | | (2) | | | cosmic (rays) (1) | cosmic microwave
background
radiation (CMBR) | | | | Sun (1) | | | | | rocks / ground (1) | | | | | {nuclear / atomic} tests / nuclear waste (1) | accept nuclear
accidents
(Chernobyl, | | | | (nuclear) power stations (1) | Fukushima etc) | | | | plant (sources) (1) | | | | | buildings (1) | | | | | food (1) | | | | | water (1) | accept named foods | | | | medical (1) | accept X-rays,
radiotherapy | | | | radon (1) | ignore alpha, beta,
gamma | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--------------------------------------|--|------| | 2(c) | processing (1) | | (2) | | | 125 000
1 000 000
OR
1
8 | accept an
appropriate attempt
using more than
one halving | | | | OR
3 half-lives or 3 x 5700 | | | | | evaluation (1) | | | | | 17100 | 17 000 | | | | | award full marks for
the correct answer
without working | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--------------------------------|---|------| | 2(d) | An explanation linking: | | (2) | | | neutron (decays) to proton (1) | mass number stays the same but atomic number increases by 1 accept answers in terms of quarks (dud becomes uud) | | | | beta emitted (1) | beta decay / β seen NOT β ⁺ /beta plus allow (fast) electron emitted | | | | | allow for 2 marks:
$n \square p + e$ OR ${}^{14}_{6}C \rightarrow {}^{14}_{7}N + {}^{0}_{-1}\beta^{(-)}$ | | (Total for Question 2 = 8 marks) | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|---|------| | 3(a) | An answer that includes: | | (4) | | | (measure) mass of the trolley (1) | weigh the trolley | | | | (measure) (vertical) height / h (1) | NOT measure
height of ramp | | | | repeat for a range of masses (1) | | | | | plus any one from: method of identifying / measuring h (1) OR repeat firing with same mass (1) | e.g. use of reference mark accept "use ruler to measure height/h" for 2 marks NOT "use ruler to measure height of | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|---|---|------| | 3(b) | reference to $\Delta PE = mg(\Delta)h$ (1) | can be seen in calculations | (3) | | | relevant values from graph and one calculation to find energy (1) repeated with 2 nd set of values (1) | e.g. 0.6 x 10 x 0.230
≈ 1.4 (J)
e.g. 1.0 x (10) x 0.138
≈ 1.4 (J)
must see
calculations for mp2
and 3 | | | | | 1 mark for 2
calculations of mh
with 'g' omitted
(MP3) | | |--------------------|--|--|------| | Question
Number | Answer | Additional guidance | Mark | | 3(c) | A description including: | | (3) | | | measure appropriate distance (1) | e.g. distance along
runway from max
height to P | | | | measure appropriate time (1) | e.g. start the watch
when trolley stops
stop the watch when
trolley hits spring | | | | use | | | | | (average) speed = <u>distance</u>
(1)
time | accept s = <u>d</u>
t | | (Total for Question 3 = 9 marks) | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|--|------| | 4(a) | An explanation linking: | | (2) | | | make the distance
between students larger
(1) | | | | | OR | | | | | viable alternative method
such as
use microphones / sound
sensors / datalogger (to
start and stop timer) (1) | | | | | with: | | | | | to give a more
measurable time (1) | 50 m is too short (a
distance to produce a
measurable time) | | | | OR | | | | | to remove (variable) reaction times (at start and end) / to reduce effect of reaction times / improve accuracy of | gives a longer time –
more accurate
measurement | | | | timing (1) | do not accept 'more
accurate' without
qualification for either
method | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|---|--|------| | 4(b) | A description including particles (at end) vibrate (more) (about fixed positions) (1) | allow atoms / ions
/ molecules for
particles | (2) | | | cause neighbouring particles to vibrate (more) (1) | vibrations passed along OR reference to longitudinal waves / compressions and rarefactions | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|---------------------------------------|------| | 4(c) | single straight line in upper right quadrant (1) | ignore arrow
direction | (2) | | | direction change towards the normal (1) | conditional on
first mark
point | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|--|------| | 4(d) | using cold row: evaluate (K=)376 (1) using warm row: substitute K and ρ $\frac{376}{\sqrt{1.16}}$ OR 349.10 (1) 349 (m/s) to 3 sig figs (1) | other K from earlier calculation √1.16 any answer to 3 sig figs 349.10 scores MP1 and MP2 award full marks for the correct answer without working | (3) | (Total for Question 4 = 9 marks) | Question
Number | Answer | Additional guidance | Mark | |--------------------|---|---------------------|------| | 5(a) | ☐ B centripetal force | | (1) | | | The only correct answer is B (correct term for circular motion) | | | | | A is not correct – incorrect term | | | | | c is not correct – incorrect term | | | | | D is not correct – incorrect term | | | | Question
Number: | | Additional guidance | Mark | |---------------------|---|---------------------|------| | 5(b)(i) | single arrow towards centre of the circle applied to the object (1) | judge by
eye | (1) | | Question
Number | Answer | Additional
Guidance | Mark | |--------------------|---|---|------| | 5(b)(ii) | an explanation including | | (2) | | | velocity is a vector (1) (because) direction changes (1) | velocity has
(magnitude
and) direction /
velocity is
speed in a
(certain)
direction | | | Question Number | Answer | Additional guidance | Mark | |-----------------|---|---|------| | 5(c)(i) | substitution in $v^2 - u^2 = 2ax$ (1) $24^2 - 7.6^2 = 2 \times 3 \times x$ rearrangement (1) $(x =) \frac{24^2 - 7.6^2}{6}$ evaluation (1) 86 (m) | accept rearrangement and substitution in either order allow numbers that round to 86 (m) award full marks for the correct answer without working | (3) | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|--|------| | 5(c)(ii) | recall and substitution (1)
(a = v - u) 3.0 = $24 - 7.6t$ | Allow alternative method:
average speed = distance /
time i.e 15.8 = 86(.37) / time | (3) | | | rearrangement (1)
t= <u>v-u</u>
a | (t =) 86(.37) / 15.8 | | | | OR
(t =) <u>24 - 7.6</u>
3.0 | | | | | evaluation (1)
5.5 (s) | allow numbers that round to 5.5 (s) OR numbers that round to 5.4 if using alternative method and distance = 86 award full marks for the correct answer without working no marks for t = d / (v-u) = 86(.37) / (24-7.6) giving 5.3 s as an answer | | (Total for Question 5 = 10 marks) | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|--|------| | 6(a) | suggestion to include one from | | (1) | | | (ultraviolet/UV) is (the most) harmful to the eyes (1) | (UV) can
damage eyes | | | | protects eyes from damage/harm
(from UV rays) (1) | protects against cataracts/cancer | | | | | accept makes it
more
comfortable in
bright sunlight | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|---|--|------| | 6(b) | (Jupiter is) 5 times (further away) (1) radio waves and light waves travel at the same speed (in space) (1) | All electromagnetic (EM) waves travel at the same speed accept attempt to use consistent speed (of light) to calculate two distances | (2) | | Question
Number | Answer | Additional guidance | Mark | |--------------------|---|--|------| | 6(c) | a description including: | | (4) | | | UVA mostly transmitted OR some absorbed (1) | UVA mostly travels through | | | | UVB some transmitted OR mostly absorbed (1) | accept less
transmitted than
UVA | | | | UVC not transmitted OR mostly absorbed OR some reflected (1) | more absorbed than UVA or UVB | | | | correct relationship of absorption/ transmission to wavelength / [] (1) | wavelength decreasing (with) absorption increasing OR longer wavelengths transmit more | | | | | abs trans inc dec inc dec inc dec | | | Question
Number | Answer | | |--------------------|--|------------| | 6(d) | Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. | (6)
exp | | | AO1 strand 1 (6 marks) radio waves are (often) produced intentionally (by humans) gamma rays are (often) produced spontaneously / randomly radio waves are produced by (free) electrons radio waves are produced by oscillating (free) electrons / alternating current (ac) radio waves are produced in electrical circuits / aerials gamma rays may result from radioactive decay gamma rays produced in the nucleus gamma rays produced by energy changes / rearrangement in the nucleus gamma rays produced to stabilise the nucleus gamma rays produced in annihilations (PET scanning etc) gamma rays may be produced as a result of (nuclear) fission or fusion | | | Level | Mark | Descriptor | |---------|------|---| | | 0 | No rewardable material. | | Level 1 | 1-2 | Demonstrates elements of physics understanding,
some of which is inaccurate. Understanding of scientific
ideas lacks detail. (AO1) | | | | Presents an explanation with some structure and coherence. (AO1) | | Level 2 | 3-4 | Demonstrates physics understanding, which is mostly
relevant but may include some inaccuracies.
Understanding of scientific ideas is not fully detailed
and/or developed. (AO1) | | | | Presents an explanation that has a structure which is
mostly clear, coherent and logical. (AO1) | | Level 3 | 5-6 | Demonstrates accurate and relevant physics
understanding throughout. Understanding of the
scientific ideas is detailed and fully developed. (AO1) | | | | Presents an explanation that has a well-developed
structure which is clear, coherent and logical. (AO1) | ## Summary for guidance | Level | Mark | Additional Guidance | General additional guidance – the decision within levels e.g At each level, as well as content, the scientific coherency of what is stated will help place the answer at the top, or the bottom, of that level. | |---------|------|--|--| | | 0 | No rewardable material. | | | Level 1 | 1-2 | Additional guidance | Possible candidate responses | | | | isolated fact(s) about one radiation | gamma rays are (often) produced spontaneously / randomly | | Level 2 | 3-4 | Additional guidance | Possible candidate responses | | | | Some understanding shown i.e. a limited comparison made including some facts about the production of each radiation OR more detailed facts given about the production of one of them | radio waves produced in wires and gamma produced in nucleus radio waves produced by AC in wires | | Level 3 | 5-6 | Additional guidance Understanding is detailed and fully developed. detailed comparison made with linked facts about the production of each (one radiation may have significantly more detail than the other but both should feature for level 3) | Possible candidate responses radio waves produced by electrons oscillating in wires; gamma produced by annihilation of electrons interacting with positrons | (Total for Question 6 = 13 marks)