Electromagnetic Induction and Transformers | \mathbf{C} |)U | е | St | 10 | วท | S | | |--------------|----|---|----|----|----|---|--| | | | | | | | | | Q1. (i) Figure 17 shows the output from a battery. Figure 17 | (2) | |-------| | | | | | | | | | | | (3) | | , - , | | | | | | | | | | | potential difference =V (Total for question = 5 marks) | Q2. | |---| | The transformer in a battery charger has a primary coil and a secondary coil. The voltage across the primary coil = 230 V. The voltage across the secondary coil = 15 V. The current in the secondary coil is 3.1 A. Calculate the current in the primary coil. | | Use the equation | | $primary current = \frac{secondary \ voltage \times secondary \ current}{primary \ voltage}$ | | (2) | | | | current = | | | | Q3. This question is about using the mains electricity supply. A transformer is used to connect a laptop computer to the mains electricity supply. The input voltage to the transformer is 230 V. The output current from the transformer is 2.37 A. The transformer has an output voltage of 19.0 V. The transformer used is 100% efficient. | | Calculate the input current to the transformer. | | Use the equation | | input current × input voltage = output current × output voltage (3) | | input current = A | (Total for question = 3 marks) | Q4. | |---| | The primary coil of a different transformer is connected to the 230 V mains supply. | | The voltage across the secondary coil is 15 V. | | The primary coil has 600 turns. | | Calculate the number of turns on the secondary coil. | | Use an equation selected from the list of equations at the end of the paper. | | (2) | | | | | | number of turns = | | (Total for question = 2 marks) | Q5. Figure 18 shows a transformer. | Figure 18 | | |---|-----| | (i) State the purpose of the transformer shown in Figure 18. | | | | (1) | | (ii) Calculate the output voltage of the secondary coil. | | | | | | Use an equation selected from the list of equations at the end of this paper. | (3) | | | | output voltage =V (Total for question = 4 marks) | Q6. | | |---|----| | There is a changing magnetic field in the core of a transformer. | | | (i) Describe the cause of the changing magnetic field in the core of the transformer. | | | | 2) | | | | | | | | | | | (ii) A potential difference of 230 V is applied across the primary coil of a transformer. | | | There is a potential difference of 15 V across the secondary coil. | | | The primary coil has 2000 turns. Calculate the number of turns in the secondary coil. | | | Use an equation selected from the list of equations at the end of this paper. | 3) | | | | | | | | | | | | | | | | | turns | | | (Total for question = 5 marks) | | | (Totat for question = 3 marks) | | | | | | Q7. | | |-------------------|--| | There is an alte | ernating current of 3 A in the primary coil of a transformer. | | There is an alte | ernating current of 6 A in the secondary coil of the transformer. | | The transform | er is 100% efficient. | | (i) The size of t | the potential difference (voltage) across the secondary coil is | | | (1) | | <u>□</u> A t | wice the size of the current in the primary coil | | ■ B h | nalf the size of the current in the primary coil | | ☑ C t | wice the size of the voltage across the primary coil | | ■ D h | nalf the size of the voltage across the primary coil | | secondary coil | v an alternating current in the primary coil causes an alternating current in the doi: of the transformer. (3) | | | | | ••••• | | | | | | | | | | | | | | | | (Total for question = 4 marks) | Q8. Figure 17 is a diagram representing a loudspeaker. Figure 17 Explain how sound is produced when an alternating current is supplied to the coil of the loudspeaker. | (4) | |-----| | • | | | | | | • | | • | | • | | | | | | | | | (Total for question = 4 marks) Q9. * Figure 19 shows a coil of wire that is being rotated between the poles of a magnet. Figure 19 Figure 20 shows how the current in the coil changes during one complete rotation of the coil. Figure 20 Explain why the current changes in the way shown by the graph in Figure 20. Your answer should include details of the position of the coil relative to the magnet at each of the times labelled P, Q, R, S and T. You may use diagrams to help your answer. (6) (Total for question = 6 marks) Q10. Complete the following sentences using one of the phrases from the box below. efficiency is reduced the national grid a power station heat loss is reduced a transformer |) Electrical power is generated at | | |--|------| | | (1 | | | | | i) Electricity is transmitted over long distances by transmission lines that are part of | | | | (1 | | | | | ii) Electricity is transmitted at high voltages so that | (1 | | | (_ | | | | | (Total for question = 3 mar | ·ks) | #### Q11. Figure 15 shows three stages of a magnet moving into and then out of a coil of wire. The coil is connected to a milliammeter. Figure 15 (i) Which row of the table shows the deflection on the milliammeter for the three stages in Figure 15? magnet moving into coil magnet stationary out of coil A B C D Magnet moving inside coil magnet moving out of coil D D Magnet moving inside coil magnet moving out of coil D D Magnet moving magnet moving out of coil D D Magnet moving magnet moving out of coil D D Magnet moving magnet moving out of coil D Magnet moving magnet moving out of coil D Magnet moving magnet moving out of coil D magnet moving out of coil D Magnet moving Figure 16 (1) | (ii) Give two ways of increasing the deflections on | the milliammeter shown in Figure 16. | |---|--------------------------------------| | 1 | | | 2 | | | | | | | (Total for question = 3 marks) | | Q12. Which of these could be the output for a dynamo? | | | current ^ | current 1 | | 0 time | o time | | | | | current ↑ | current ^ | | 0 | 0 time | | ⊠ C | □ D | | | (Total for question = 1 mark) | | Q13. | | |---|-----| | A teacher is demonstrating electromagnetic induction. The teacher has a bar magnet, a coil of wire and a sensitive voltmeter. (i) Draw a diagram to show how the teacher should arrange the apparatus. | (1) | | | | | (ii) Explain how the teacher could use this apparatus to demonstrate the factors | | | | | | affecting the size and direction of the induced potential difference. | (4) | | affecting the size and direction of the induced potential difference. | (4) | | affecting the size and direction of the induced potential difference. | (4) | | affecting the size and direction of the induced potential difference. | (4) | | affecting the size and direction of the induced potential difference. | (4) | | | (4) | | | (4) | | | (4) | | | (4) | (Total for question = 5 marks) Q14. In a small transformer - the primary voltage is 230 V - the primary current is 0.020 A the secondary voltage is 5.0 V Calculate the secondary current. Use the equation $$I_{s} = \frac{V_{p} \times I_{p}}{V_{s}}$$ (2) secondary current = A (Total for question = 2 marks) Q15. * High voltage transmission cables and transformers are used in the national grid. Explain how using high voltage transmission cables and transformers allows the distribution of electrical power around the United Kingdom to be as efficient as possible. Refer to the following equations in your answer. $$P = I^2 \times R$$ $$V_p \times I_p = V_s \times I_s$$ | (6) | |--------| |
•• | | •• | | •• | |
•• | |
•• | | | | •• | | | | | | •• | |
 | | | | | | | | | | | (Total for question = 6 marks) # <u>Mark Scheme</u> – Electromagnetic Induction and Transformers Q1. | Question | Answer | Additional Guidance | Mark | |---------------------|--|---|---------------| | Number: | | | (0) | | (i) | an explanation linking: | | (2)
AO 1 1 | | | (p.d. / current is only induced by a) changing magnetic field (1) | alternating magnetic field | | | | a changing current (is needed to
create a changing magnetic field)
(1) | the voltage/current
(as shown) is not
changing | | | Question
Number: | Answer | Additional Guidance | Mark | | (ii) | substitution into $\frac{Vp}{V_s} = \frac{Np}{N_s} (1)$ | substitution and
rearrangement in
either order | (3)
AO 2 1 | | | $\frac{25}{V_s} = \frac{30}{150}$ | $\frac{V_s}{25} = \frac{150}{30}$ | | | | rearrangement (1) | | | | | $V_s = \frac{25 \times 150}{30}$ | | | | | evaluation (1) | | | | | (V _s =) 130 (V) | allow 120 or 125 | | | | | award full marks for
correct answer without
working | | # Q2. | Question
number | Answer | Additional guidance | Mark | |--------------------|------------------|---|------| | | substitution (1) | | (2) | | | 15 x 3.1
230 | | | | | evaluation (1) | | | | | 0.20 (A) | allow any value that rounds to 0.20; e.g. 0.2022 | | | | | award full marks for the correct answer without working | | Q3. | Question number | Answer | Additional guidance | Mark | |-----------------|--|--|------------| | | substitution (1)
(I _p) x 230 = 19 x 2.37 | rearrangement and
substitution in either
order
allow numerical
values written above
equation | (3)
AO2 | | | rearrangement (1) $(Ip \) = (19.0 \times 2.37) \div 230$ evaluation (1) | input voltage =
(output voltage
× output current)
÷ input voltage | | | | input current = 0.196 (A) | award full marks for
any answer that
rounds to 0.2(00) (A)
award 1 mark for
5.1(07) (substitution
with upside down
rearrangement)
award full marks for
correct answer
without working | | Q4. | Question number | Answer | Additional guidance | Mark | |-----------------|--|--|------------| | | substitution into $\frac{v_p}{v_s} = \frac{Np}{Ns}$ (1) $\frac{230}{15} = \frac{600}{Ns}$ Rearrangement and evaluation (1) $(Ns =) \frac{600 \times 15}{230}$ | allow substitution and
rearrangement in
either order | (2)
AO2 | | | = 39 | accept values that round to 39 e.g. 39.13 award full marks for the correct answer without working. if no other marks scored then award 1 mark for answers of that round to 0.026 (eg 0.255) (substitution mark) | | #### Q5. | Question
number | Answer | Additional guidance | Mark | |--------------------|--|---------------------|------| | (i) | {step up/increase}(output) voltage or {stepdown/ decrease}(output) current | | (1) | | Question number | Answer | Additional guidance | Mark | |-----------------|---|---|------| | (ii) | substitution (1) $\frac{230}{V_s} = \frac{18}{26}$ $\text{rearrangement} \text{(1)}$ $\text{(V}_s =) \frac{230 \times 26}{18}$ | substitution and re-
arrangement in either
order | (3) | | | evaluation (1) | | | | | 330(V) | allow 332 (.2) (V) allow answers between322 (V) and 333 (V)where candidates have truncated an intermediate calculation 159.2 (V), 160 (V) gains 1 mark | | | | | award full marks for
the correct answer
without working | | Q6. | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|---|------| | (i) | A description that makes reference
to | ignore references to
voltage / potential
difference | (2) | | | an alternating /changing current (1) | AC
accept switch on or off | | | | in the primary coil (1) | | | | Question | Answer | Additional guidance | Mark | |----------|---|---|------| | Number | 11771 | | | | (ii) | substitution into $\frac{Vp}{Np} = \frac{Vs}{Ns}$ (1) | rearrangement and substitution can be in either order | (3) | | | $\frac{230}{2000} = \frac{15}{Ns}$ | $\frac{230}{15} = \frac{2000}{Ns}$ | | | | | using $\frac{Vp}{Vs} = \frac{Np}{Ns}$ | | | | rearrangement (1) | | | | | $(N_S =) \frac{2000 \times 15}{230}$ | | | | | evaluation (1) | | | | | 130 (turns) | | | | | | accept answers that
round to 130 or 131
(arising from rounding
of intermediate
evaluations) | | | | | award full marks for
the correct answer
without working | | ### Q7. | Question number | Answer | Additional guidance | Mark | |-----------------|---|---------------------|------------| | i | D half the size of the voltage across the primary coil | | (1)
AO2 | | | A and B are incorrect because
the voltage will not necessarily
be twice or half the value of the
current | | | | | C is incorrect because the voltage across secondary coil will be less than that across the primary coil | | | | Question number | Answer | Additional guidance | Mark | |-----------------|---|---------------------|------------| | ii | an explanation linking three of magnetic field in primary / secondary coil / core (due to current) (1) magnetic field is alternating (1) (this magnetic) field cuts/links secondary coil | | (3)
AO1 | | | induces an alternating voltage (across secondary coil) (1) | | | # Q8. | Question
number | Answer | Additional guidance | Mark | |--------------------|---|---|------| | (b) | an explanation linking in a
logical order any four of the
following:- | | (4) | | | (alternating) current produces
(changing) magnetic field
(around coil)(1) | | | | | the coil is in a magnetic field
(of fixed magnets) (1) | magnetic fields
interact | | | | (varying current in magnetic field) produces a force (1) | | | | | the force on the coil /cone
(continuously) changes
direction (1) | | | | | the paper cone /coil vibrates/
moves to and fro (1) | making the air
molecules (in the
cone) vibrate | | ### Q9. | Question
number | Indicative content | Mark | |--------------------|--|--------------------| | * | Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. | (6)
AO2 and AO3 | | | coil moving/cuts through magnetic field coil experiences changing magnetic field induces a voltage/current in the coil size of voltage/current depends on rate of change of magnetic field rate of change depends on angle between direction of movement and direction of field. greatest (rate of) change when coil moving perpendicular to field. maximum current at Q and S coil is horizontal at Q and S coil moving vertically up at Q and down at S direction of current at Q opposite to S. no change when coil moving parallel to field. zero current at P, R and T coil vertical at P, R, and T Credit can be given for correctly labelled diagrams | | | Level | Mark | Descriptor | | |---------|------|--|--| | , | 0 | No awardable content | | | Level 1 | 1–2 | Interpretation and evaluation of the information attempted but
will be limited with a focus on mainly just one variable. Demonstrates limited synthesis of understanding. (AO3) | | | | | The explanation attempts to link and apply knowledge and
understanding of scientific ideas, flawed or simplistic connections
made between elements in the context of the question. (AO2) | | | Level 2 | 3–4 | Interpretation and evaluation of the information on both
variables, synthesising mostly relevant understanding. (AO3) | | | | | The explanation is mostly supported through linkage and
application of knowledge and understanding of scientific ideas,
some logical connections made between elements in the context
of the question. (AO2) | | | Level 3 | 5-6 | Interpretation and evaluation of the information, demonstrating
throughout the skills of synthesising relevant understanding.
(AO3) | | | | | The explanation is supported throughout by linkage and
application of knowledge and understanding of scientific ideas,
logical connections made between elements in the context of the
question. (AO2) | | | Level | Mark | Additional Guidance | General additional guidance – the decision within levels e.g At each level, as well as content, the scientific coherency of what is stated will help place the answer at the top, or the bottom, of that level. | |---------|------|---|--| | 20. | 0 | No rewardable material. | | | Level 1 | 1–2 | Additional guidance isolated facts about interaction of electric current and magnetic fields or one salient feature of the graph | Possible candidate responses the coil experiences a changing magnetic field as it rotates. Size of the (induced) current varies. | | Level 2 | 3-4 | Additional guidance simple description of why current changes (either in direction or magnitude) and reference to at least one relevant point on the graph. | Possible candidate responses at position R the (plane of the) coil is parallel to the field and there is no current Or at position Q the coil is moving quickly through the field and the current is large. | | Level 3 | 5-6 | Additional guidance Full description of why current changes in magnitude or direction and reference to at least two relevant points on the graph | Possible candidate responses At Q, the coil is horizontal and moving most quickly across the field so the current is at its greatest. At R the coils is vertical and moving parallel to the field so there is no current. | # Q10. | Question
Number: | Answer | Mark | |---------------------|-----------------|---------------| | (i) | a power station | (1)
AO 1 1 | | Question
Number: | | Mark | |---------------------|-------------------|---------------| | (ii) | the national grid | (1)
AO 1 1 | | Question Number: | Answer | Mark | |------------------|----------------------|---------------| | (iii) | heat loss is reduced | (1)
AO 1 1 | #### Q11. | Question
number | Answer | Mark | |--------------------|--|------| | (i) | A and B are incorrect because there is no current when the magnet is station in the coil. D is incorrect because there is always a current when the magnet is moving in th coil | (1) | | Question
number | Answer | Additional guidance | Mark | |--------------------|--------------------------------------|---------------------------------------|------| | (ii) | any two from | | (2) | | | moving the magnet faster (1) | | | | | using a stronger magnet (1) | | | | | more turns/rotations on the coil (1) | do not allow increase
size of coil | | #### Q12. #### Q13. | Question
Number | Answer | | Additional
guidance | Mark | |--------------------|---|------------|----------------------------------|------| | (i) | a diagram that has the meter connecte
the ends of a coil and a magnet orient
parallel to the axis of the coil; for exan | ated | poles need
not be
labelled | (1) | | Question | Answer | Additional | guidance | Mark | | Question | Answer | Additional guidance | Mark | |----------|--|--|---| | Number | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | (ii) | An explanation linking | | (4) | | | move magnet towards coil and then away from coil (1) | change poles of magnet | | | | with note change in 'direction' of meter (1) allow use of ± in digital meters | | | | | move magnet quickly then slowly (1) with | change speed of
movement of magnet
or
changes to the number
of turns | | | | larger / smaller meter reading (1) | ignore changes to
size/strength of magnet | | ### Q14. | Question Number: | Answer | Additional Guidance | Mark | |------------------|---------------------------|----------------------------------|--------| | | substitution (1) | | (2) | | | $(I_s) = 230 \times 0.02$ | | AO 2 1 | | | 5.0 | | | | | evaluation (1) | | | | | 0.9(A) | accept 0.92 (A) | | | | | award full marks for the correct | | | | | answer without working | | # Q15. | Question
Number | Answer | | | |--------------------|---|---------------|--| | * | Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. | (6)
AO 1 1 | | | | AO1(6 marks) Understanding of physics (long) transmission wires have resistance reduced p.d. at the destination (thermal) energy is dissipated in the transmission wires this creates a power loss (refers to P=I²R) transformers are used to step up to a high voltage for transmission this means a low current (refers to V _p I _p =V _s I _s) so power loss is small(er) transformers used to step down to a safer voltage for consumers consumer wires are shorter and so power loss is less of an issue | | | | Level | Mark | Descriptor | |---------|------|---| | | 0 | No rewardable material. | | Level 1 | 1-2 | An explanation that demonstrates elements of
physics understanding, some of which is
inaccurate. Understanding of scientific, enquiry,
techniques and procedures lacks detail. (AO1) | | | | Presents an explanation that is not logically ordered
and with significant gaps. (AO1) | | Level 2 | 3-4 | An explanation that demonstrates physics
understanding, which is mostly relevant but may
include some inaccuracies. Understanding of
scientific ideas, enquiry, techniques and
procedures is not fully detailed and/or developed.
(AO1) | | | | Presents an explanation of the procedure that has a
structure which is mostly clear, coherent and logical
with minor steps missing. (AO1) | | Level 3 | 5-6 | An explanation that demonstrates accurate and
relevant physics understanding throughout.
Understanding of the scientific ideas, enquiry,
techniques and procedures is detailed and fully
developed. (AO1) | | | | Presents an explanation that has a well-developed
structure which is clear, coherent and logical. (AO1) |