Magnetic Fields and Motor Effect #### **Ouestions** Q1. A student investigates magnetism using two toys as shown in Figure 14. Figure 14 (i) There is a magnet attached to the top of each toy. The student moves the toy brick towards the toy car. The magnet on the toy brick repels the magnet on the toy car. On Figure 14, label the north pole and the south pole on the magnet attached to the toy brick. (7) | (ii) Explain why the toy car starts to move only when the toy brick gets near to the toy car | ar. | |--|-------| | | (2) | | | ••••• | | | | | | | | | | | (iii) | The student thinks that two magnets on top of each other | r will produce a | a magnetic field | |-------|---|------------------|------------------| | tha | t is stronger than the magnetic field from a single magnet. | | | | The student has a metre rule and more magnets available. Describe how the student could develop this investigation to test this theory. | (4) | |--|-----| (Total for question = 7 marks) Q2. A student sets up the apparatus shown in Figure 9. Figure 9 (i) When the current in the solenoid is switched on, the solenoid attracts the iron nail. Describe how the student could use this apparatus to investigate how the size of the current in the solenoid affects the force of attraction between the solenoid and the iron nail. (4) |
 |
 | | |------|------|--| | | | | | (ii) The spring constant of a different spring is 24 N/m. | | |---|------| | The spring is extended from its unstretched length by 12 cm. Calculate the energy transferred in extending the spring by 12 cm. Use an equation selected from the list of equations at the end of this paper. | (2) | | | | | | | | energy transferred = | | | (Total for question = 6 ma | rks) | | Q3. | | | Two long, thin magnets are held with their N-poles facing each other. The force, <i>F</i> , between the magnets can be calculated using the equation | | | $F = \frac{K}{d^2}$ | | | where | | | K is a constant value d is the distance between the magnets. | | | (i) The magnets are 4.0 cm apart. | | | The force between the magnets is 1.2 N. Calculate the value of <i>K</i> . State the unit. | | | | (3) | | | | | K = unit | | | (ii) The magnets are held the same distance apart but with the N-pole of one magnet now facing the S-pole of the other magnet. | | | The value of K does not change. | | | State how the force would compare with the force in part (i). | (7) | | /Tatal factor and a street | l ' | | (Total for question = 4 ma | rKS | Q4. A student investigates moments of forces. Figure 14 shows the apparatus used. Figure 14 The pivot is under the centre of the rod. A magnet is fixed to one end of the rod. A piece of modelling clay is fixed to the other end of the rod. The system is in equilibrium. (a) The student fixes a coil to the bench under the magnet as shown in Figure 15. Figure 15 The coil of wire is connected to a d.c. power supply so that there is a current in the coil. To bring the system back into equilibrium, the student hangs a 0.050 N weight on the rod, 8.4 cm away from the pivot, as shown in Figure 15. Calculate the size of the force between the magnet and the coil. (3) | (b) Describe how the student could develop the investigation to determine if the size of the force between the magnet and the coil is directly proportional to the size of the current in the coil. | | | |---|--|--| | (4) | (Total for question = 7 marks | | | #### Q5. Figure 13 shows two metal rods carrying a current. A metal roller touches both rods and completes the circuit. The roller is in the magnetic field produced by a magnet. Figure 13 (i) The magnetic flux density of the magnetic field at the roller is 1.2 T. The current in the roller is 2.5 A. The length of the roller carrying the current is 0.060 m. Calculate the force on the roller. Use the equation $$F = B \times I \times l$$ (2) | (ii) Describe how Fleming's left-hand rule can be used to determine the direction of the forcacting on the roller. | е | |--|-----| | You may draw a diagram to help your answer. | (3) | (iii) Draw an arrow on Figure 13 to show the direction of the force acting on the roller. | (7) | | | (1) | | (Total for question = 6 ma | rks | | Q | 6. | |---|----| | _ | | #### A student has - a power pack - a long piece of wirea stiff card - iron filings Describe how the student could use this equipment to show the shape of the magnetic field produced by a current in the wire. You may draw a diagram to help with your answer. | (4) | |-----| (Total for question = 4 marks) #### Q7. A student measures the strength of the magnetic field at several distances from the wire in Figure 7. Figure 8 shows most of the student's results. Figure 9 shows two extra sets of results. mT is a unit of strength of a magnetic field. | distance from wire in cm | strength of magnetic field in mT | |--------------------------|----------------------------------| | 1.0 | 8.1 | | 2.0 | 3.9 | Figure 9 (i) Plot the two extra points on Figure 8. (2) (ii) Draw a best fit curve on the graph in Figure 8. 7) (iii) Use the graph in Figure 8 to calculate the change in strength of magnetic field when the distance from the wire changes from 4 cm to 8 cm. (2) change in strength of magnetic field =mT) | (iv) The distance from the wire affects the strength of the magn | etic field. | |--|-------------------------------| | State one other factor that affects the strength of the magn | netic field. | | | (1) | | | | | (| Total for question = 6 marks) | Q8. Figure 7 shows a wire passing through a piece of card. The wire carries an electric current. # Figure 7 (i) Draw one magnetic field line on Figure 7, to show the shape of the magnetic field produced by the current. (1) (ii) Draw One arrow on the field line you have drawn to show the direction of the magnetic field. (7) (Total for question = 2 marks) Q9. Figure 5 shows two magnetic poles facing each other. The magnetic field between the poles is uniform. On Figure 5, draw the magnetic field lines between the two poles and show the direction of this magnetic field. Figure 5 (Total for question = 3 marks) Q10. Figure 12 shows a wire carrying a current. Figure 12 Draw, on the card in Figure 12, the magnetic field that is produced by the current. (Z) (Total for question = 2 marks) Q11. Figure 13 shows a part of a machine used to separate steel cans from aluminium cans. Figure 13 The cans are carried along a moving belt. The belt goes around a roller. The roller is a magnet. Each can falls into one of the containers. Explain how this machine separates the steel cans from the aluminium cans. | (2) | |-----| | , | | _ | | | | | | | | | (Total for question = 2 marks) Q12. Figure 6 shows some objects and words describing these objects. Draw one line from each object to its description. Figure 6 (Total for question = 2 marks) Q13. Figure 11 shows a copper wire between two magnetic poles. Figure 11 (7) The current in the wire is in the direction shown by the arrow. The wire experiences a force due to the magnetic field. (i) The direction of the force due to the magnetic field is A down B up C towards the north pole of the magnet D towards the south pole of the magnet (ii) The interaction between the magnetic fields produced by the magnet and the current in the wire produces forces on the magnet and the wire. Compare these two forces. (iii) Figure 12 shows a different wire inside a uniform magnetic field. Figure 12 The magnetic flux density of the magnetic field is 0.72 N/A m. The length of the wire inside the field is 30 mm. The size of the force due to the magnetic field on the wire is 0.045 N. Calculate the size of the current in the wire. Use an equation selected from the list of equations at the end of this paper. Q14. Which of these is a magnetic material? A aluminium B carbon C cobalt D copper (Total for question = 1 mark) Q15. Figure 11 shows the magnetic field of a magnet. Figure 11 At which point is the magnetic field strongest? □ A □ B □ C □ D (Total for question = 1 mark) #### Q16. A student uses a plotting compass to investigate the magnetic field around a wire. Figure 10 shows the wire going straight through a card. Figure 10 Figure 10 shows the compass needle when there is no current in the wire. (i) Which of these shows a possible direction of the compass needle when there is a current in the wire going from P to Q? (3) (ii) Describe how the student could develop the investigation to find the shape of the magnetic field produced by the current. (Total for question = 4 marks) Q17. A student uses plotting compasses to investigate the magnetic field between the poles of two bar magnets. Figure 12 shows one of the plotting compasses and one of the bar magnets. Figure 12 The student places the two magnets on a piece of paper with a pole of one magnet a few centimetres away from a pole of the other magnet. The student places 20 plotting compasses on the paper near the magnets. Figure 13 shows the direction in which each of the plotting compasses points. Figure 13 (i) Draw two rectangles on Figure 13 to show the positions of the two bar magnets. Label the N-pole and the S-pole of each magnet. | (ii) ⁻ | The student wants to | determine the | shape of the | magnetic fie | eld for a large | r area arc | ound | |-------------------|----------------------|---------------|--------------|--------------|-----------------|------------|------| | the | magnets. | | | _ | | | | | Describe how the student should continue the investigation using just one plotting compass. | | |---|--------| | | (3) | (Total for question = 5 m | narks) | Q18. Figure 4 shows the magnetic field produced by a current in a long, straight wire. Figure 4 Which row of the table is correct when the strength of the magnetic field is greatest? | | | distance from the wire | current | |-------------|---|------------------------|---------| | \boxtimes | Α | small | small | | × | В | small | large | | ⊠ (| c | large | small | | X | D | large | large | (Total for question = 1 mark) (7) Q19. Figure 5 shows a magnet holding some paper clips. Figure 5 | 1194103 | |---| | Describe how a student could show that the paper clips are induced magnets. | | (2) | | | | | | | | | | | | (Total for question = 2 marks) | | | | Q20. | | Q20. | | Describe how you could show that the Earth has a magnetic field. | | (2) | | | | | | | | | | (Tatalfan maatian 2 maada) | | (Total for question = 2 marks) | Q21. A student investigates moments of forces. Figure 14 shows the apparatus used. Figure 14 The pivot is under the centre of the rod. A magnet is fixed to one end of the rod. A piece of modelling clay is fixed to the other end of the rod. The system is in equilibrium. State the relationship between the moment of the weight of the magnet and the moment of the weight of the piece of modelling clay about the pivot. | (٦) | |-------------------------------| |
 | |
 | | | | (Total for question = 1 mark) | Q22. Which of these materials would be the most suitable for making a temporary magnet? A copper B iron C plastic D steel (Total for question = 1 mark) | _ | ` | - | $\overline{}$ | | |---|---|---|---------------|--| A student has | a bar magnet, | a piece of iror | n the same size | e as the magnet, | , and some _l | paper | |---------------|---------------|-----------------|-----------------|------------------|-------------------------|-------| | clips. | | | | | | | Describe how the student could use these items to demonstrate temporary induced magnetism. | (3) | |-----| | • | | | | | | | | | | • | | | (Total for question = 3 marks) Q24. A student uses a compass to investigate the magnetic field near a bar magnet. The student places the compass near the bar magnet as shown in Figure 6. Figure 6 | (i` | Mark the | north pole | of the bar | magnet with | an 'N' in | Figure 6. | |-----|-------------|------------|-------------|----------------|-----------|-----------| | ١ı | i iain tiic | | OI LIIC DUI | THUELICE WILLI | an in iii | I IEUIC C | (ii) State two ways in which the investigation could be developed to show the shape of the magnetic field around the bar magnet. You may add to Figure 6 to help with your answer. | | (2) | |---|-----| | 1 | | | | | | | | | | | | 2 | | | | | | | | | | | (Total for question = 3 marks) (7) # **Mark Scheme** – Magnetic Fields and Motor Effect Q1. | Question
number | Answer | Additional guidance | Mark | |--------------------|--|--|------| | (i) | S N | allow | (1) | | | | S | | | | | or | | | | | south north | | | Question
number | Answer | Additional guidance | Mark | | (ii) | an explanation linking two from | | (2) | | | (strength of magnetic) field
/force (1) | (magnets) attract /
repel | | | | (depends on) distance from the magnet (1) | force / field is weaker
when further away
(from magnet) or
reverse argument | | | | | lines of force are
further apart | | | Question
number | Answer | Additional guidance | Mark | | (iii) | a description to include four from | | (4) | | | move brick towards the car (1) | change distance
between car and
brick | | | | until car (just) starts to move
(1) | | | | | measure distance of brick from car/magnet (1) | measure how close
car gets to the brick | | | | repeat with 2 magnets (1) | | | | | compare distances (for one magnet and for two magnets) (1) | | | | | detail about procedure (1) | how to attach second magnet(s) | | | | | how to measure
distance | | | | | where to measure | | | | | take several readings
and find average | | | | conclusion or prediction (1) | if distance is bigger
then it works | | ### Q2. | Question
Number: | Answer | Additional Guidance | Mark | |---------------------|--|---|---------------| | (i) | a description to include 4 of the following: | | (4)
AO 2 2 | | | note position of pointer
before current is switched
on (1) | measure length of spring
before current is switched
on | | | | measure position of pointer
when current in coil (1) | | | | | (use an ammeter to) measure current (1) | | | | | calculate the extension /
stretch of the spring (1) | how far nail moves | | | | use force (of attraction) is
proportional to extension /
stretch (of spring) (1) | calculate force from spring
constant and extension
calibrate spring | | | | repeat with different
currents (1) | increase the current | | | | | calculate the extension of
the spring using new
position of pointer minus
starting position of pointer
is worth 3 marks | | | Question
Number: | Answer | Additional Guidance | Mark | |---------------------|-------------------------------------|--|---------------| | (ii) | select and substitute (1) | | (2)
AO 2 1 | | | $(E =) V_2 \times 24 \times 0.12^2$ | 1/2 x 24 x 12 ² max 1 mark | | | | evaluation (1) | | | | | (E =) 0.17 (J) | accept answers that round
down to 0.17
e.g. 0.1728 | | | | | POT error (e.g. 1728) max
1 mark | | | | | award full marks for correct
answer without working | | ### Q3. | Question number | Answer | Additional guidance | Mark | |-----------------|---|--|------------| | (i) | substitution of values (1) $1.2 = \frac{K}{4(.0)^2}$ rearrangement and evaluation | allow rearrangment
before substitution
(K=) 1.2 x 4(.0) ² | (3)
AO2 | | | (1) | 40.0 | | | | (K=) 19 | 19.2
0.00192 | | | | | award full marks for
the correct answer
without working | | | | unit (1) | independent mark | | | | N cm ² | N m ² | | | Question
number | Answer | Additional guidance | Mark | |--------------------|--|---|------------| | (ii) | same magnitude and opposite direction (1) | allow (now) attraction for opposite direction | (1)
AO1 | ### Q4. | Question
number | Answer | Additional guidance | Mark | |--------------------|--|--|------------| | а | recall and substitution (1) (force x 12.0 =) 0.050 x 8.4 | allow substitution and rearrangement in either order | (3)
AO2 | | | rearrangement (1) (force =) $\frac{0.050 \times 8.4}{12.0}$ | | | | | evaluation (1) | | | | | (force =) 0.035 (N) | award full marks for
the correct answer
without working.
if no other marks
scored then award 1 | | | | | mark for answers
that round to 29 (eg
28.57) (substitution
mark) | | | Question
number | Answer | Additional guidance | Mark | |--------------------|---|---|------------| | b | a description to include four of
the following
measure the value of current
(1)
measure force or distance(1)
vary the current (1) | accept calculate for measure | (4)
AO3 | | | restore equilibrium of system (1) | increase weight or
move (existing)
weight to new
position | | | | calculate ratio between force
and current or distance and
current (1)
if ratio is the same then they
are proportional (1) | plot a graph of force /
distance against
current
graph would be a
straight line (through
the origin) | | # Q5. | Question
number | Answer | Additional guidance | Mark | |--------------------|---|---|------| | i | substitution (1)
(F=) 1.2 x2.5 x0.06 | | (2) | | | evaluation (1) | | | | | 0.18 (N) | award full marks for
the correct answer
without working | | | Question
number | Answer | Additional guidance | Mark | |--------------------|---|--|------| | (ii) | a description to include
first finger, second finger and
thumb (of left-hand) held
mutually perpendicular (1) | award 1 mark for
attempt at mutually
perpendicular shown in a
diagram | (3) | | | first finger (is in the direction of) magnetic field OR second finger (is in the) direction of) current (1) thumb (is in the) direction of force / motion (1) | diagram relating thumb
and fingers to correct
quantities at right angle
gains 3 marks | | | Question
number | Answer | Additional guidance | Mark | |--------------------|--|---------------------|------| | (iii) | arrow from roller towards contacts (1) | | (1) | # Q6. | Question
Number | Answer | Additional guidance | Mark | |--------------------|---|--|------| | | An answer that combines four of the following points. MP1: Put wire {through card / near card / under card / over card / round rolled up card } (1) MP2: Put iron filings on card / around wire (1) | IGNORE use of apparatus not specified in the list (Iron nails etc) | (4) | | | MP3: Connect wire to power pack One wire is acceptable (1) MP4: Switch on or reference to current / charges flowing (in wire) NOT in filings (1) MP5: Filings attracted / moving / see if wire attracts filings (1) | marking points can be scored from a diagram | | | | MP6: Pattern seen in filings – circles /
lines / onion (1) | filings show shape of field | | ### Q7. | Question number | Answer | | Additional guidance | Mark | |-----------------|-----------|---|---------------------|------------| | i | 8- × 6- F | One mark for each point olotted correctly, to within ± 1 small square | | (2)
AO2 | | Question number | Answer | Additional guidance | Mark | |-----------------|---|---------------------|------------| | ii | smooth curve drawn fitting the plotted points (1) | judge by eye | (1)
AO2 | | Question number | Answer | Additional guidance | Mark | |-----------------|--|--|------------| | iii | substitution using an attempt at calculation – any subtraction seen (1) e.g. 2(.0) – 1(.0) evaluation (1) (-) 1(.0) (mT) | accept any number
that rounds to 1.0
award full marks for
correct answer
without working | (2)
AO3 | | Question number | Answer | Mark | |-----------------|-------------------|------------| | iv | (size of) current | (1)
AO1 | ### Q8. | Question number | Answer | Additional guidance | Mark | |-----------------|------------------------------|---|------------| | i | circle shown around wire (1) | allow tolerance for
translation of 3D to 2D
ignore any multiplicity of
those circles | (1)
AO1 | | Question number | Answer | Additional guidance | Mark | |-----------------|------------------------------------|---------------------|------| | ii | arrow indicating a clockwise | | (1) | | | direction (for magnetic field line | | AO1 | | | drawn for i) (1) | | | ### Q9. | Question | Answer | Additional | Mark | |----------|--|--|------| | Number | | guidance | | | | South pole North pole | | (3) | | | MP1: any (vertical) line from pole to pole (1) | ignore lines
outside of the
magnets for
MP1 and MP2 | | | | MP2: at least two further equidistant straight, (vertical) lines from pole to pole (1) | judge by eye | | | | MP3: arrow on any line, north to south (1) | | | | | | any arrow south
to north, no
mark awarded
for MP3 | | # Q10. | Question
number | Answer | Additional guidance | Mark | |--------------------|---|-----------------------|------| | | at least two concentric circles (1) arrows correct (1) | separation of the | (2) | | | arrows correct (1) | circles is increasing | | # Q11. | Question
number | Answer | Additional guidance | Mark | |--------------------|---|---|------| | | an explanation linking any two of | | (2) | | | steel is magnetic (material) (1) | steel attracted /
sticks to / carried
round by
magnet/roller) | | | | aluminium is non-magnetic
(material) (1) | is not attracted / does
not stick (to magnet
roller) | | | | steel falls into container A /
aluminium falls into container B
(1) | steel cans are carried
further round than
aluminium and fall
into A
steel hangs on for
longer / aluminium
falls quicker | | ### Q12. | Question number | Answer | Additional guidance | Mark | |-----------------|--|---|------------| | | nail in a current-carrying coil permanent magnet plotting compass needle temporary magnet weoden ruler | three links
correct (2)
one link correct
(1) | (2)
AO1 | # Q13. | Question | Answer | Additional | Mark | |----------|---|------------|------| | Number | | guidance | | | (i) | The only correct answer is B: up | | (1) | | | A is incorrect because it does not follow the "Left Hand Rule" | | | | | C is incorrect because it is not perpendicular to the direction of the magnetic field. | | | | | D is incorrect because it is not perpendicular to the direction of the magnetic field. | | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|--|------| | (ii) | A description that includes: | | (1) | | | (forces are) equal (in size) and opposite (in direction) | accept (in this context)
forces balance | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|---|--|------| | (iii) | substitution into $F = B \times I \times l$ (1)
$0.045 = 0.72 \times I \times 30 \times 10^{-3}$ | rearrangement and
substitution can be in
either order | (3) | | | rearrangement (1) | | | | | $(I =) \frac{F}{B \times l} OR \frac{0.045}{0.72 \times 30 (\times 10^{-3})}$ | $(I =) \frac{45}{21.6}$ | | | | evaluation (1) | | | | | 2.1 (A) | accept answers that
round to 2.1 (A)
accept final value
rounded down to 2 | | | | | leave POT until final evaluation | | | | | award full marks for
the correct answer
without working | | Q14. | Question | Answer | Mark | |----------|---|------| | Number | | | | | C cobalt | (1) | | | C is the only correct answer. | | | | | | | | A is incorrect because aluminium is not magnetic. | | | | B is incorrect because carbon is not magnetic. | | | | D is incorrect because copper is not magnetic. | | | | | | ### Q15. | Question
number | Answer | Mark | |--------------------|--|------| | 1 | В | (1) | | | A.C. and D. are in the areas where the field lines are | | | | A,C and D are in the areas where the field lines are further apart and the field is weaker | | # Q16. | Question
Number | Answer | Mark | |--------------------|---|------| | (i) | The only correct answer is A | (1) | | | B is incorrect because it is not tangential to the (circular) magnetic field lines produced by the current C is incorrect because it is not tangential to the (circular) magnetic field lines produced by the current | | | | D is incorrect because it is not tangential to the (circular) magnetic field lines produced by the current | | | Answer | Additional guidance | Mark | |--|--|---| | | | | | A description of the method that includes: | Marking points may be awarded from a diagram. | (3) | | EITHER | | | | (using single compass) | | | | record field at one location (1) | mark where compass points or | | | | put dots at each end of needle /
arrow | | | find how field continues (1) | move compass to new position /
until needle over previous dot | | | connect the dots (to reveal
overall shape of field / line)
(1) | start from different position and
repeat (idea of obtaining concentric
circles) | | | OR | | | | arrange multiple compasses
(1) | | | | over all of the card (1) | all the way round the wire | | | direction of (all of) the
compass needles indicates
shape of field (1) | | | | | A description of the method that includes: EITHER (using single compass) record field at one location (1) find how field continues (1) connect the dots (to reveal overall shape of field / line) (1) OR arrange multiple compasses (1) over all of the card (1) direction of (all of) the compass needles indicates | A description of the method that includes: EITHER (using single compass) record field at one location (1) find how field continues (1) connect the dots (to reveal overall shape of field / line) (1) OR arrange multiple compasses (1) over all of the card (1) direction of (all of) the compass needles indicates Marking points may be awarded from a diagram. | | OR | | | |---|---|--| | sprinkle iron filings on card
(before current is switched on)
(1) | | | | switch on current/ tap card (1) | allow iron filings to arrange
themselves | | | pattern produced indicates shape of field (1) | | | # Q17. | Question number | Answer | Additional guidance | Mark | |-----------------|--|---|------------| | (i) | example: N S S N rectangles in (approximately) correct position (1) all four poles correctly labelled (1) | judge by eye
but do not
allow
rectangles in
contact | (2)
AO3 | | Question
number | Answer | Additional guidance | Mark | |--------------------|--|--|------------| | (ii) | a description to include | | (3)
AO1 | | | place a (plotting) compass on
the paper (near to the
magnet(s)) and mark direction
of the field (at that point) (1) | place a (plotting)
compass on the
paper (near to the
magnet(s)) and put a
dot at each end of
the needle | | | | determine how the field continues from that point (1) | move compass so
that one end of the
needle is over the
mark (just made) | | | | connect field lines to reveal overall shape(1) | join up the dots | | ### Q18. | Question
Number: | Answer | | | Mark | |---------------------|-----------------------------|-------------------------|----------------------|--------| | | В | small | large | (1) | | | _, , | | | AO 1 1 | | | The only c | orrect answer is B | | | | | | rrect because the curre | | | | | C is not con
large | rrect because the dista | nce from the wire is | | | | D is not co
large | rrect because the dista | nce from the wire is | | ### Q19. | Question | Answer | Additional | Mark | |----------|--|------------------------------|----------------| | Number: | | guidance | | | | a description to include: | | (2)
AO 3 1a | | | remove the magnet (from the paper clips)(1) | | AO 3 1b | | | paperclips no longer attracted to each other (1) | accept no longer
magnetic | | # Q20. | Question
Number: | Answer | Additional guidance | Mark | |---------------------|---|--|----------------| | | a description to include: | | (2)
AO 3 2a | | | use a compass (1) | accept reasonable
alternatives such as
suspended magnet
needles on cork in
water | | | | always points in the same
direction / will point north (1) | | | # Q21. | Question
number | Answer | Additional guidance | Mark | |--------------------|--|--|------------| | | (sum of) the clockwise
moments = (sum of) the
anticlockwise moments | moment of magnet =
moment of modelling
clay
moments are equal
(size) | (1)
AO1 | # Q22. | Question
Number: | Answer | Mark | |---------------------|---|---------------| | | B iron The only correct answer is B | (1)
AO 1 1 | | | A is not correct as copper is non-magnetic C is not correct as plastic is non-magnetic D is incorrect, as steel is only suitable for a permanent magnet | | ### Q23. | Question
Number: | Answer | Additional Guidance | Mark | |---------------------|--|--|---------------| | | a description to include: | | (3)
AO 1 2 | | | method of producing
temporary induced
magnetism (1) | place iron near / in contact
with magnet / in magnetic
field | | | | | OR | | | | | use magnet to pick up one paper clip | | | | | OR | | | | | use magnet to make iron a temporary magnet | | | | | | | | | method of demonstrating the magnetic properties of the | paper clip(s) attracted to iron | | | | temporary magnet (1) | OR | | | | | use first paper clip to pick
up another paper clip | | | | | | | | | method of demonstrating
magnetic effect is temporary
(1) | remove magnet and paper
clips no longer attracted /
fall off | | | | | OR | | | | | wait some / short time and
iron bar no longer picks up /
attracts paper
clips | | ### Q24. | Question Number: | Answer | Additional guidance | Mark | |------------------|--------|--|----------------| | (i) | N N | N must be at the end
of the bar, not at the
end of the compass
needle | (1)
AO 3 3a | | Question
Number: | Answer | Additional guidance | Mark | |---------------------|--|---|----------------| | (ii) | any two developments from: | marks can be taken
from text or diagram | (2)
AO 3 3a | | 5 | use a compass in various positions
/ more compasses (1) | allow 'around' 'on', 'near' the magnet etc | | | | plot more points/mark direction of
compass(point)/ join the dots
(1) | series of dots /
several compasses
end to end | | | | sprinkle/add iron filings (1) | | | | | give more than one (magnetic field) line (1) | | | | | | | |